You are here

Publications

Di Bari L, Bisardi M, Cotogno S, Weigt M, Zamponi F. Emergent time scales of epistasis in protein evolution. Proceedings of the National Academy of Sciences. 121, pp.e2406807121 (2024).
Chen JZ, Bisardi M, Lee D, Cotogno S, Zamponi F, Weigt M, Tokuriki N. Understanding epistatic networks in the B1 β-lactamases through coevolutionary statistical modeling and deep mutational scanning. Nature Communications. 15, pp.8441 (2024).
Calvanese F, Weigt M, Nghe P Generating Artificial Ribozymes Using Sparse Coevolutionary Models. in RNA Design: Methods and Protocols. Springer. pp. 217–228 (2024)
Calvanese F, Lambert CN, Nghe P, Zamponi F, Weigt M. Towards parsimonious generative modeling of RNA families. Nucleic Acids Research. pp.gkae289 (2024).
Meynard-Piganeau B, Feinauer C, Weigt M, Walczak AM, Mora T. TULIP: A transformer-based unsupervised language model for interacting peptides and T cell receptors that generalizes to unseen epitopes. Proceedings of the National Academy of Sciences. 121, pp.e2316401121 (2024).
Meynard-Piganeau B, Fabbri C, Weigt M, Pagnani A, Feinauer C. Generating interacting protein sequences using domain-to-domain translation. Bioinformatics. 39, pp.btad401 (2023).
Ciarella S, Trinquier J, Weigt M, Zamponi F. Machine-learning-assisted Monte Carlo fails at sampling computationally hard problems. Machine Learning: Science and Technology. 4, pp.010501 (2023).
Gandarilla-Pérez CA, Pinilla S, Bitbol A-F, Weigt M. Combining phylogeny and coevolution improves the inference of interaction partners among paralogous proteins. PLoS Comp Biol. 19(3), pp.e1011010 (2023).
Patteson JB, Fortinez CMarie, Putz AT, Rodriguez-Rivas J, L. Bryant H, Adhikari K, Weigt M, T. Schmeing M, Li B. Structure and Function of a Dehydrating Condensation Domain in Nonribosomal Peptide Biosynthesis. Journal of the American Chemical Society. 144(31), pp.14057 - 14070 (2022).
Vigué L, Croce G, Petitjean M, Ruppé E, Tenaillon O, Weigt M. Deciphering polymorphism in 61,157 Escherichia coli genomes via epistatic sequence landscapes. Nature Communications. 13(1), pp.4030 (2022).
Rodriguez-Rivas J, Croce G, Muscat M, Weigt M. Epistatic models predict mutable sites in SARS-CoV-2 proteins and epitopes. Proceedings of the National Academy of Sciences. 119, pp. e2113118119 (2022).
Trinquier J, Uguzzoni G, Pagnani A, Zamponi F, Weigt M. Efficient generative modeling of protein sequences using simple autoregressive models. Nature Communications. 12(1), pp.5800 (2021).
Muntoni AP, Pagnani A, Weigt M, Zamponi F. adabmDCA: adaptive Boltzmann machine learning for biological sequences. BMC Bioinformatics. 22(1), pp.528 (2021).
Bisardi M, Rodriguez-Rivas J, Zamponi F, Weigt M. Modeling Sequence-Space Exploration and Emergence of Epistatic Signals in Protein Evolution. Molecular Biology and Evolution. (2021).
Barrat-Charlaix P, Muntoni AP, Shimagaki K, Weigt M, Zamponi F. Sparse generative modeling via parameter reduction of Boltzmann machines: Application to protein-sequence families. Phys. Rev. E. 104, pp.024407 (2021).

Pages

Open Positions