You are here

Article

April 12, 2022

A novel computational approach to explore and classify functional diversity in genomic sequences. See the new article appeared in Molecular Biology and Evolution from the Analytical Genomics team.

Read the press release at Sorbonne Université and the CNRS

January 14, 2022

Towards predicting new mutations in SARS-CoV-2: in the very early stages of an emerging viral outbreak, can we predict new mutations in the proteins of the virus which might lead to its future variants? The "Statistical Genomics and Biological Physics" team proposes a computational approach based on a single viral genome infecting humans and pre-existing viral genomes infecting other species.

For more information see:

January 14, 2022

Gene duplication is a major source of functional diversification. However, the co-existence of two paralogues with similar biochemical properties but diverging functions can lead to potentially detrimental competition between the duplicates. This phenomenon has been named “paralogue interference”. In a recent article published in "Frontiers in cellular infection and microbiology, the "genetics networks" team of LCQB has addressed this question in the human pathogen Candida glabrata. They showed that evolution selected mutations which decreased competition between two, potentially interfering, transcription factors, thus allowing the emergence of the particular modes of regulation for respiration and iron homeostasis observed in extent Saccharomycetaceae species.

Link to the article

July 19, 2021

We provided crucial insights to the molecular mechanism through which HBV infects cells. A fusion peptide in preS1 and the human protein-disulfide isomerase ERp57 are involved in HBV membrane fusion process.

Link to the article

April 13, 2021

To avoid deleterious misfolding of proteins, the assembly of multiprotein complexes is tightly controlled and can either occur co-translationally in the cytoplasm or as a spatially restricted event by targetting ribosomes at particular subcellular locations. In an article recently published in Molecular Cell, Benoit Palancade's team (Institut Jacques Monod) showed that both phenomenon are at play in the biogenesis of the nucleopore, one of the largest multiprotein complex in the cells. The "genetics networks" team from LCQB contributed to this work by conducting genome-wide analyses of the interactions between nucleoporins (key nucleopore subunits) during translation 

Link to the article

May 12, 2020

ANRS communicates today on our new webserver COVTree, designed to predict coevolving residues in overlapping genes and to detect mirrored coevolution.

Link to the article

May 11, 2020

Interested in phylogenetic reconstruction based on synteny rather than protein sequence? PhyChro is out in MBE. This is the last piece of a huge work, CHROnicle , done in collaboration by the Analytical Genomics and the Biology of Genomes teams.

Link to the article

 

May 4, 2020

We propose PhyloSofS, the first automated tool to reconstruct plausible evolutionary scenarios explaining a set of observed transcripts, and to generate 3D molecular models of the protein isoforms. We apply it to the JNK family (60 transcripts, 7 trees) to identify AS events of ancient origin and relate their functional outcome with changes in the protein dynamics. We also show that PhyloSofS can help identify new potential therapeutic targets.

Link to the paper

 

November 15, 2019

Nonribosomal peptide synthetases (NRPSs) are microbial megaenzymes that make a wide variety of small-molecule products, including many that are clinically used as antitumors, antibiotics, or immunosuppressants. Peptide synthesis proceeds with assembly-line logic, where each station on the NRPS assembly line is a multidomain unit called a module. While the function of single modules is well studied, much less is known how they work together. Researchers from the Schmeing lab at McGill University have resolved several dimodular NRPS structures, which show coordinated interactions between modules, and large conformational changes between catalytically relevant states. Martin Weigt from the “Statstical Genomics and Biological Physics” team has performed complementary coevolutionary analyses using the direct coupling analysis (DCA), which confirm the biological relevance and evolutionary conservation of the observed inter-modular interactions. DCA analysis has also allowed to suggest mutations in a module-swapped chimeric NRPS protein, which significantly increased the activity of the protein, a result of direct relevance toward the longstanding goal of NRPS bioengineering for production of new-to-nature bioactive small molecules.

Link to article in Science

September 23, 2019

GEMME is a fast, scalable and simple method to predict mutational landscapes from natural sequences. It demonstrates how deleterious effects of a protein mutation are identified by looking at the closest known sequence accepting the mutation in the evolutionary tree of sequences and at its epistatic changes.  The article just appeared in Molecular Biology and Evolution.

Link to the article
Link to the webserver 
 

Pages

Subscribe to Article